Maximality theorems for Fréchet algebras
نویسندگان
چکیده
منابع مشابه
On the maximality of subdiagonal algebras
We consider Arveson’s problem on the maximality of subdiagonal algebras. We prove that a subdiagonal algebra is maximal if it is invariant under the modular group of a faithful normal state which is preserved by the conditional expectation associated with the subdiagonal algebra.
متن کاملEffect algebras with the maximality property
The maximality property was introduced in [9] in orthomodular posets as a common generalization of orthomodular lattices and orthocomplete orthomodular posets. We show that various conditions used in the theory of effect algebras are stronger than the maximality property, clear up the connections between them and show some consequences of these conditions. In particular, we prove that a Jauch–P...
متن کاملRelating maximality-based semantics to action refinement in process algebras
This paper extends to process algebras the notion of maximality which has initially been introduced for prime event structures and P/T nets and shows how this notion of maximality may be used for deening an adequate semantics of Basic LOTOS able to support action reenement. Such an approach appears to be more convenient than the classical ST-semantics where non atomic actions are split into sta...
متن کاملEmbedding theorems for classes of GBL-algebras
The poset product construction is used to derive embedding theorems for several classes of generalized basic logic algebras (GBL-algebras). In particular it is shown that every n-potent GBL-algebra is embedded in a poset product of finite n-potent MV-chains, and every normal GBL-algebra is embedded in a poset product of totally ordered GMV-algebras. Representable normal GBLalgebras have poset p...
متن کاملSymmetric Imprimitivity Theorems for Graph C∗-algebras
The C∗-algebra C∗(E) of a directed graph E is generated by partial isometries satisfying relations which reflect the path structure of the graph. In [10], Kumjian and Pask considered the action of a group G on C∗(E) induced by an action of G on E. They proved that if G acts freely and E is locally finite, then the crossed product C∗(E) × G is Morita equivalent to the C∗-algebra of the quotient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2005
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-05-08008-1